Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Rafal Kruszynski, ${ }^{\text {a* }}$ Agata
Trzesowska, ${ }^{\text {a }}$ Wojciech
Czestkowski, ${ }^{\text {b }}$ Tadeusz J.
Bartczak ${ }^{\text {a }}$ and Elżbieta MikiciukOlasik ${ }^{\text {c }}$
${ }^{\mathrm{a}}$ Institute of General and Ecological Chemistry, Technical University of Łódź, ul. Żeromskiego 116, 90-924 Łódź, Poland, ${ }^{\text {b }}$ Institute of Organic Chemistry, Technical University of Łódź, ul. Żeromskiego 116, 90-924 Łódź, Poland, and ${ }^{\text {c }}$ Department of Chemical Technology of Drugs, Medical University of Łódź, ul. Muszyńskiego 1, 90-145 Łódź, Poland

Correspondence e-mail:
rafal.kruszynski@p.lodz.pl

Key indicators

Single-crystal X-ray study
$T=291 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.058$
$w R$ factor $=0.132$
Data-to-parameter ratio $=16.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
4-[(4-Ethoxyphenyl)aminoacetyl]-6,7-di-methyl-1,2,3,4-tetrahydroquinoxalin-2-one

All the interatomic distances in the title compound, $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$, are normal. The heteroatom ring of the quinoxalinone system shows a half-chair conformation, slightly distorted towards a sofa. In the crystal structure, the molecules dimerize via a pair of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The dimers are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and possible $\mathrm{C}-\mathrm{H}-\pi$ interactions into a three-dimensional network.

Comment

The present work is a continuation of our studies of derivatives of 2,3,4,5,6,7-hexahydro-1H-1,4,7-benzotriazine-2,5dione (see, for example, Mikiciuk-Olasik et al., 1994). Such compounds possess important pharmacological properties (see, for example, Bartczak et al., 1995) and also have applications in environmental protection (Num et al., 1983).

The crystal structures of four derivatives of this family have been described previously, namely N, N^{\prime}-bis(2-(4-ethoxy-phenyl)amino)-4,5-dimethyl-o-phenylenediamine, (III) (Kruszynski et al., 2001), 4-[(4-ethoxyphenyl)aminoacetyl]-1,2,3,4-tetrahydroquinoxalin-2-one, (VA) (Kruszynski et al., 2002a), 4-(2-benzylamino-1-oxoethyl)-1,2,3,4-tetrahydro-6,7-dimethylquinoxalin-2-one (Kruszynski et al., 2002b) and 4-(2-benzylamino-1-oxoethyl)-1,2,3,4-tetrahydroquinoxalin-2-one (Kruszynski et al., 2006). We now describe the synthesis and crystal structure of the title compound, (V) (Fig. 1), in which all the interatomic distances can be considered normal.

The molecular geometry of the fused ring system of (V) is comparable with those of the above-mentioned compounds. The puckered heteroatom ring ($\mathrm{C} 1 / \mathrm{C} 6-\mathrm{C} 8 / \mathrm{N} 1 / \mathrm{N} 2$) in (V) shows a half-chair conformation, slightly distorted towards a sofa, with a local pseudo-twofold axis passing through the midpoints of the N1-C8 and N2-C6 bonds. The values of the asymmetry parameters (Duax \& Norton, 1975) are $\Delta C_{2}(N 1-$

Received 30 August 2006
Accepted 11 September 2006

Figure 1
The molecular structure of (V). Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

Figure 2
Part of the molecular packing of (V), showing intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed lines) creating a chain structure.
$\mathrm{C} 8)=10.00(4)^{\circ}$ and $\Delta \mathrm{C}_{\mathrm{s}}(\mathrm{N} 1)=17.51(7)^{\circ}$. The total puckering amplitude $Q_{\mathrm{T}}=0.421$ (7) \AA (Cremer \& Pople, 1975) lies within the range of $0.391-0.439 \AA$ found for the abovementioned similar compounds. Atomic deviations from the mean plane defined by atoms $\mathrm{C} 1-\mathrm{C} 6 / \mathrm{N} 1 / \mathrm{N} 2$ are: C 70.441 (5), C8 0.767 (5), O1 0.586 (6), C9 0.034 (10), C10 - 0.188 (10) and $\mathrm{C} 11-0.892$ (4) A. The aromatic ring of the ethoxyphenyl unit makes a dihedral angle of $43.19(9)^{\circ}$ with the quinolinone plane (N1/N2/C1-C8).

The conformations of the side chains in (V) and ($\mathrm{V} A$) show some significant differences, although the molecules differ only in two methyl groups attached to the 1,2,3,4-tetrahydro-quinoxalin-2-one unit. For example, the $\mathrm{C} 12-\mathrm{N} 12-\mathrm{C} 13-$ C 14 torsion angle in (V) is $104.2(3)^{\circ}$, and the equivalent angle in $(\mathrm{V} A)$ is $75.5(4)^{\circ}$. The $\mathrm{C} 11-\mathrm{C} 12-\mathrm{N} 12-\mathrm{C} 13$ angle in (V) is $109.7(3)^{\circ}$, while that in $(\mathrm{V} A)$ is $93.1(3)^{\circ}$.

The molecules of (V) create dimers via inversion symmetrygenerated pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1). These dimers are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions into chains propagating along the [111] axis (Fig. 2). A very acute intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bond and two weak intermolecular $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions (Table 1) may also affect the crystal packing of (V).

Experimental

Compound (V) was prepared according to the method depicted in the scheme. Compound (I) (Kruszynski et al., 2006) (0.02 mol) was dissolved in anhydrous ethanol (500 ml) with fine-powdered sodium carbonate (0.07 mol). 1-Amino-4-ethoxybenzene (0.02 mol) was then
added and the reaction mixture was heated at boiling point under reflux for 10 h . The solvent was then distilled off and the dry residue was recrystallized from ethanol. Compound (II), and small amounts of compounds (III) and (IV), were isolated by fractional crystallization of the solid residue. Compound (II) (0.01 mol) was dissolved in ethanoic anhydride (40 ml) and the mixture was heated at boiling point for 1 h . The solvent was then distilled off and the dry residue was recrystallized from ethanol to yield crystals of (V). Elemental analysis, calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$ (found): C 66.82 (66.65), H 6.34 (6.32), N 10.63 (10.69), O (by difference) 16.21 (15.99)\%. Yield 85\%, m.p. 496-497 K. ${ }^{1} \mathrm{H}$ NMR (in DMSO/TMS, δ, p.p.m.): 1.55 [$t, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}(\mathrm{Et}), J=7 \mathrm{~Hz}\right], 1.95\left(s, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.4\left(s, 6 \mathrm{H}, 2 \mathrm{CH}_{3}-\mathrm{ar}\right), 4.25[q$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Et}), J=7 \mathrm{~Hz}\right], 4.5\left(s, 2 \mathrm{H}\right.$, ar- $\left.\mathrm{NHCH}_{2} \mathrm{CON}-\mathrm{ar}\right), 4.75(s, 2 \mathrm{H}$, ar$\left.\mathrm{NHCH}_{2} \mathrm{CON}-\mathrm{ar}\right), 7.25[m, 6 \mathrm{H}, \mathrm{H}(\mathrm{ar})], 11.00(s, 1 \mathrm{H}, \mathrm{NHCO})$.

Crystal data
$\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$
$M_{r}=395.45$
Triclinic, $P \overline{1}$
$a=6.634$ (1) \AA
$b=10.547$ (2) A
$c=15.276$ (3) \AA
$\alpha=94.21$ (3) ${ }^{\circ}$
$\beta=90.10(3)^{\circ}$
$\gamma=104.64(3)^{\circ}$

$$
\begin{aligned}
& V=1031.1(4) \AA^{3} \\
& Z=2 \\
& D_{x}=1.274 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } \text { Kadiation } \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=291.0(3) \mathrm{K} \\
& \text { Neede, colourless } \\
& 0.35 \times 0.11 \times 0.07 \mathrm{~mm}
\end{aligned}
$$

Data collection

Kuma KM-4 diffractometer $\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.971, T_{\text {max }}=0.996$
4993 measured reflections
4518 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.132$
$S=0.87$
4518 reflections
267 parameters
H -atom parameters constrained

1787 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.054$
$\theta_{\text {max }}=27.6^{\circ}$
3 standard reflections every 100 reflections intensity decay: 4.2%

Table 1

Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
Cg 1 and Cg 2 are the centroids of the $\mathrm{C} 1-$ and C 13 -containing rings, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H \cdots A	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O} 1^{\text {i }}$	0.99	1.88	2.852 (3)	166
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{O} 11$	0.97	2.30	2.736 (3)	107
C19-H19B \cdots O11 ${ }^{\text {ii }}$	0.97	2.46	3.380 (4)	158
C15-H15 $\cdot \mathrm{Cg} 1^{\text {iii }}$	0.93	2.83	3.652 (5)	148
$\mathrm{C} 22-\mathrm{H} 22 \mathrm{C} \cdots \mathrm{Cg} 2^{\text {iv }}$	0.96	2.72	3.474 (5)	136

Symmetry codes: (i) $-x+3,-y+2,-z+2$; (ii) $-x+2,-y+1,-z+1$; (iii)
$-x+2,-y+2,-z+1$; (iv) $x+1, y, z$.

The N -bound H atom was located in a difference map and refined as riding in its as-found relative position. The C -bound H atoms were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.93-0.99 \AA$) and refined as riding. The methyl groups were allowed to rotate about their local threefold axis. $U_{\text {iso }}(\mathrm{H})$ was set equal to $1.2 U_{\text {eq }}$ (carrier) or $1.5 U_{\text {eq }}$ (methyl carrier).

organic papers

Data collection: KM-4 Software (Kuma, 1993); cell refinement: KM-4 Software; data reduction: DATAPROC (Gałdecki et al., 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $X P$ in SHELXTL/PC (Sheldrick, 1990) and MERCURY (Version 1.4; Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PLATON (Spek, 2003).

This work was financed by funds allocated by the Ministry of Science and Higher Education to the Institute of General and Ecological Chemistry, Technical University of Łódź, Poland.

References

Bartczak, T. J., Kajkowski, T., Trzebinski, P., Mikiciuk-Olasik, E. \& Kotelko, B. (1995). Heteroat. Chem. 6, 495-498.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Duax, W. L. \& Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1, pp. 1622. New York: Plenum

Gałdecki, Z., Kowalski, A. \& Uszynski, I. (1998). DATAPROC. Version 10.0.4. Kuma Diffraction, Wrocław, Poland.

Kruszynski, R., Bartczak, T. J. \& Mikiciuk-Olasik, E. (2001). Acta Cryst. E57, o953-o955.
Kruszynski, R., Bartczak, T. J. \& Mikiciuk-Olasik, E. (2002a). Acta Cryst. E58, o98-o101.
Kruszynski, R., Bartczak, T. J. \& Mikiciuk-Olasik, E. (2002b). Acta Cryst. E58, o461-o464.
Kruszynski, R., Trzesowska, A., Czestkowski, W., Bartczak, T. J. \& MikiciukOlasik, E. (2006). Acta Cryst. E62, o3974-o3976.
Kuma (1993). KM4 Software. Kuma Diffraction, Wrocław, Poland
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Mikiciuk-Olasik, E., Trzebinski, P., Nowak, R. \& Kotelko, B. (1994). Acta Pol. Pharm. Drug. Res. 51, 231-233.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Num, A. D., Loberg, M. D. \& Conley, R. A. (1983). J. Nucl. Med. 24, 23-24.
Sheldrick, G. M. (1990). SHELXTL/PC. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: © 2006 International Union of Crystallography All rights reserved

